CONTENTS

II. Cruise Reports (ROSCOP)

Japan

Hakuho Maru (July 19 - August 22, 1974)
Takuyo (October 28 - November 26, 1974)
Takuyo (March 7 - 27, 1975)
Takuyo (May 8 - 25, 1975)
Kaiyo (August 11 - September 3, 1975)
Kofu Maru (February 4 - March 4, 1975)
Kofu Maru (July 3 - 22, 1975)
Shumpu Maru (July 3 - August 8, 1975)
Chofu Maru (July 12 - August 12, 1975)
Seifu Maru (July 5 - August 12, 1975)

III. Abstract of the Papers on CSK

IV. Publications

V. Data Received

Japan (Takuyo - 2 crs., Shoyo, Kaiyo, Seifu Maru)

5.7 CO-OPERATIVE STUDY OF THE KUROSHIO AND ADJACENT REGIONS (CSK)

It was noted that the Assembly had requested the Executive Council to consider further the matter of the future of IOC activities in the Western Pacific.

The delegate of Japan introduced the subject by referring to a letter of 24 April 1976 from the International Co-ordinator for CSK, Prof. K. Wadati, (doc. IOC/EC-VII/15 Add.). He also asked the Council to consider the proposal to terminate CSK in December 1976 and replace it by another project. He then informed the Council about a draft resolution that had been prepared jointly by Japan and the Philippines which suggests the establishment of an ad hoc group to work by correspondence on matters related to the formation and work of WESTPAC; this task team will report to the tenth session of the Assembly.

The representative of Unesco stated that Unesco would continue support to the maintenance and study of the plankton collection of the Regional Marine Biological Centre in Singapore but was ceasing support for sorting. He stressed that the plankton collection is an important resource for region.

The delegate from India supported this statement and reported that both the sorted and the unsorted collections at the Centre are in an excellent condition.

The delegate of Australia stated that both WESTPAC and CINGWIO offer the Commission an opportunity to re-examine its philosophy towards co-operative investigations. In regard to both these bodies he suggested a number of basic principles to guide the Commission's attitude to them.

Firstly, the member states of the Co-operative Investigation should establish very carefully the major problems that can only be solved by co-operative study. These problems must relate to the real needs of the region. The assistance of other United Nations agencies such as FAO, WMO and Unesco (Division of Marine Sciences), as well as IOC itself, should be sought to establish these basic problems. Subsidiary bodies of these agencies such as IFPC could also have a role.

Secondly, after the basic problems are established a proper scientific formulation of the programme necessary to achieve solutions, either within the means and expertise of the Member States or with external assistance, must be arrive at. The newly-formed Scientific Advisory Board could be a means to achieve this clear formulation of a programme. The IOC should then examine the programme in relation to its budget and other considerations before accepting responsibility.

Thirdly, an evaluation of the present state of knowledge of the oceanography of the region, particularly as it relates to basic problems, must be an integral part of the programme definition. The use of consultants, or scientific bodies such as SCOR, supervised by the Scientific Advisory Board could be the mechanism to achieve this evaluation.

Finally, the Working Committees for TEMA and IODE and in some circumstances for GIPME and IGOSS should have direct representation in the programme design and execution stages of the co-operative investigation. The role of these Working Committees in the success of any co-operative investigation cannot be over-estimated.

Resolution EC-VII.6 was adopted by vote: 11 for, 1 against with 8 abstentions. The Soviet delegate believed that the vote was illegal, because in his opinion the final paragraph of the resolution contravenes resolution IX-22: Regional Co-operation in Marine Science. The Secretary was instructed to check the legality of this resolution before taking any action.

RESOLUTION EC-VII.6

AD HOC TASK TEAM FOR THE WESTERN PACIFIC (WESTPAC)

The Executive Council,

Noting resolutions IX-12 and IX-22,

Recognizing the need to continue certain activities of CSK along the lines recommended by the ICG-CSK at its tenth session (recommendation CSK-X.1),
Decides to establish an ad hoc Task Team for WESTPAC to be composed of the national co-ordinators of the present countries participating in CSK, with the following terms of reference:

The ad hoc Task Team shall:

1. identify those marine scientific problems in the region which require international collaboration for their solution;

2. integrate the national scientific programme within the region with a view to giving them greater relevance to IOC activities in the region;

3. recommend ways and means by which the above programmes can contribute to the fulfilment of the needs of the countries in the region, as identified by the ad hoc regional TEMA meeting, Manila, 15-19 September 1975 (doc. IOC/TEMA-ASIA-1/3);

4. submit to the tenth session of the Assembly its recommendations on WESTPAC (these should be sent to the Secretary IOC by 31 May 1977);

Instructs the Secretary to investigate ways and means of appointing an appropriate scientist to work with the ad hoc Task Team for WESTPAC, and act as secretary for IOC activities in the region.

TABLE 1

<table>
<thead>
<tr>
<th>Programs Undertaken</th>
<th>Total NO. OF Stations</th>
<th>f</th>
<th>d</th>
<th>Type of Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive Oceanography</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Oceanography</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Mariculture</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Marine Biology</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Limnology</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Hydrobiology</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Microbiology</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Zoology</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Anthropology</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Other Oceanographic</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Environmental Survey</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Physical Oceanography</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Chemical Oceanography</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Biological Oceanography</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Geophysical Oceanography</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Geodetic and Geophysical</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Hydrography</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Meteorology</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Oceanography</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
<tr>
<td>Other Oceanographic</td>
<td>12</td>
<td>a</td>
<td>b</td>
<td>ROSCOP</td>
</tr>
</tbody>
</table>

Notes:
- No inquiry is made.
- Data reported on this form are declared national program (NPN).

Remarks: Zooplankton Net- ORI-type

NORPAC-type
ROSCOP (2nd edition)

OCEANOGRAPHY

GENERAL CRUISE INVENTORY

A - GENERAL INFORMATION ON WORK PERFORMED

A01 Expedition/Project: Special Study of East China Sea

A02 Cruise No. or name: 74-11

A03 Ship or platform: Takuyo (JDBP)

A04 Platform type: OI

A05 Country: JAPAN

A06 Organization: Name and address: JODC, 1-2-6, Chuo-kita, Chuo-ku, Tokyo

A07 Date from/to: 02.01.1974 to 09.07.1974

A08 Geographic area: East China Sea & Philippine Sea

A09 Type(s) of marine zone(s): Open

A10 Discipline and type of measurements:

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Type</th>
<th>Index F x 10</th>
<th>Index F x 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS, HP, HP, D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP, P, D</td>
<td>1.0</td>
<td>13.0</td>
<td></td>
</tr>
</tbody>
</table>

M - METEOROLOGY

M01 Upper air observations

M02 Incident radiation

M03 Air-sea interface studies

M04 Observations

M05 Occasional standard measurements

M06 Systematic standard measurements

M07 Other measurements

H - HYDROGRAPHY

H01 Continuous temperature recording

H02 Continuous salinity recording

H03 Dissolved oxygen measurements

H04 Dissolved salinity measurements

H05 Continuous temperature recording

H06 Continuous salinity recording

H07 Dissolved oxygen measurements

H08 Dissolved salinity measurements

H09 Classical oceanographic stations

Near sea floor

Oceanographic field
H - HYDROGRAPHY (Continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Format</th>
<th>CDOT/CDTE</th>
<th>Number</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10</td>
<td>Vertical profiles (STAD/COTD)</td>
<td>11 a 1.2</td>
<td>H27</td>
<td>Phosphates</td>
</tr>
<tr>
<td>H1</td>
<td>Sub-surface measurements</td>
<td>1.8</td>
<td>H28</td>
<td>Total - P</td>
</tr>
<tr>
<td>H2</td>
<td>Mechanical bathythermograph (not of drop)</td>
<td>24 a 1.8</td>
<td>H29</td>
<td>Nitrites</td>
</tr>
<tr>
<td>H3</td>
<td>Bathythermograph-expendable (not of drop)</td>
<td>123 a 1.8</td>
<td>H30</td>
<td>Silicates</td>
</tr>
<tr>
<td>H4</td>
<td>Sound velocity stations</td>
<td></td>
<td>H31</td>
<td>Alkalinity</td>
</tr>
<tr>
<td>H5</td>
<td>Acoustic stations</td>
<td></td>
<td>H32</td>
<td>pH</td>
</tr>
<tr>
<td>H6</td>
<td>Transparency</td>
<td></td>
<td>H33</td>
<td>Radioactivity</td>
</tr>
<tr>
<td>H7</td>
<td>Other measurements</td>
<td></td>
<td></td>
<td>Remarks:</td>
</tr>
</tbody>
</table>

P - POLLUTION

<table>
<thead>
<tr>
<th>Number</th>
<th>Format</th>
<th>GEM</th>
<th>Number</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td>Suspended solids</td>
<td>23</td>
<td>P07</td>
<td>Waste water : BOD</td>
</tr>
<tr>
<td>P02</td>
<td>Heavy metals</td>
<td>15</td>
<td>P10</td>
<td>Waste water : Other</td>
</tr>
</tbody>
</table>

Remarks:

D - DYNAMICS

<table>
<thead>
<tr>
<th>Number</th>
<th>Format</th>
<th>GEM</th>
<th>Number</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>Current meters (no. of stat.)</td>
<td>1 a 1.2</td>
<td>D07</td>
<td>Drift cards (no. released)</td>
</tr>
<tr>
<td>D02</td>
<td>Current meters (average duration of measurements)</td>
<td>1 a 1.2</td>
<td>D08</td>
<td>Bottom drifts (no. released)</td>
</tr>
<tr>
<td>D03</td>
<td>Currents measured from ship drift</td>
<td>133 a 1.2</td>
<td>D09</td>
<td>Tidal observations (duration)</td>
</tr>
<tr>
<td>D04</td>
<td>GEk</td>
<td>133</td>
<td>D10</td>
<td>Sea and swell</td>
</tr>
<tr>
<td>D05</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D11</td>
<td>No. of observations</td>
</tr>
<tr>
<td>D06</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D12</td>
<td>Other</td>
</tr>
<tr>
<td>D07</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D13</td>
<td>Sea and swell</td>
</tr>
<tr>
<td>D08</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D14</td>
<td>No. of observations</td>
</tr>
<tr>
<td>D09</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D15</td>
<td>Other</td>
</tr>
<tr>
<td>D10</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D16</td>
<td>Sea and swell</td>
</tr>
<tr>
<td>D11</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D12</td>
<td>No. of observations</td>
</tr>
<tr>
<td>D12</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D13</td>
<td>Other</td>
</tr>
<tr>
<td>D13</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D14</td>
<td>Sea and swell</td>
</tr>
<tr>
<td>D14</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D15</td>
<td>No. of observations</td>
</tr>
<tr>
<td>D15</td>
<td>Drifters (number)</td>
<td>133</td>
<td>D16</td>
<td>Other</td>
</tr>
</tbody>
</table>

B - BIOLOGY

<table>
<thead>
<tr>
<th>Number</th>
<th>Format</th>
<th>GEM</th>
<th>Number</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B02</td>
<td>Phytoplankton pigments</td>
<td>821</td>
<td>B21</td>
<td>Commercial benthic cruatcams</td>
</tr>
<tr>
<td>B03</td>
<td>Phytoplankton</td>
<td>827</td>
<td>B22</td>
<td>Deep scattering layers</td>
</tr>
<tr>
<td>B04</td>
<td>Zooplankton</td>
<td>828</td>
<td>B23</td>
<td>Acoustical reflections on marine organisms</td>
</tr>
<tr>
<td>B05</td>
<td>Neuston</td>
<td>829</td>
<td>B24</td>
<td>Biologic sounds</td>
</tr>
<tr>
<td>B06</td>
<td>Nekton</td>
<td>830</td>
<td>B25</td>
<td>Bacterial interaction</td>
</tr>
<tr>
<td>B07</td>
<td>Invertebrate nekton</td>
<td>831</td>
<td>B26</td>
<td>Zooplankton concentrations</td>
</tr>
<tr>
<td>B08</td>
<td>Pelagic eggs and larvae</td>
<td>832</td>
<td>B27</td>
<td>Arsenic concentrations</td>
</tr>
<tr>
<td>B09</td>
<td>Pelagic fish</td>
<td>833</td>
<td>B28</td>
<td>Hydro-silicon concentrations</td>
</tr>
<tr>
<td>B10</td>
<td>Zooplankton</td>
<td>834</td>
<td>B29</td>
<td>Tagging</td>
</tr>
</tbody>
</table>

Remarks:

A - GENERAL INFORMATION ON WORK PERFORMED

- **Cruise No. or name**: JUD-11
- **Platform type**: Takuyo JURF
- **Cruise leader**: CSK

M - METEOROLOGY

- **Upper air observations**: M04 Ice observations
- **Cloud base measurements**: X A 1
- **All-air interface studies**: M05 Other measurements

H - HYDROGRAPHY

H.1. Surface

- **Continuous temperature recording**: H15 Continuous temperature recording
- **Continuous salinity recording**: H16 Continuous salinity recording

H.2. Discrete measurements

- **Temperature (water sample)**: H17 Discrete temperature measurements
- **Salinity measurements**: H18 Discrete salinity measurements
- **Oxygen measurements**: H21 Oxygen

P - POLLUTION

- **Suspended solids**: P07 Waste water : BOD
- **Heavy metals**: P08 Waste water : Nitrates
- **Pesticides**: P09 Herbicides and pesticides

D - DYNAMICS

- **Current meters (no. of stations)**: D04 Current measurements (average duration of measurement)
- **Correlation from ship drift**: D05 Current correlation

B - BIOLOGY

- **Plankton**: B01 Zooplankton
- **Biological organisms**: B33 Hydrozoa and hydroids

REMARKS

- **Types of studies**: H08 Type of samples
H - HYDROGRAPHY (Continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Format</th>
<th>Number</th>
<th>Title</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10</td>
<td>Vertical profiles (STD/CTD)</td>
<td>H22</td>
<td>Phosphates</td>
<td>24</td>
<td>A</td>
</tr>
<tr>
<td>H11</td>
<td>DBP surface measurements</td>
<td>H23</td>
<td>Total P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12</td>
<td>Mechanical bathythermograph (no. of drops)</td>
<td>55</td>
<td>A</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>H13</td>
<td>Bathythermograph expendable (no. of drops)</td>
<td>12</td>
<td>A</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>H14</td>
<td>Sound velocity stations</td>
<td>H26</td>
<td>Bilaterals</td>
<td>26</td>
<td>A</td>
</tr>
<tr>
<td>H15</td>
<td>Acoustic stations</td>
<td>H27</td>
<td>Alkalinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H16</td>
<td>Transparency</td>
<td>H28</td>
<td>pH</td>
<td>24</td>
<td>A</td>
</tr>
<tr>
<td>H17</td>
<td>Other measurements</td>
<td>H31</td>
<td>Radioactivity</td>
<td>2</td>
<td>A</td>
</tr>
</tbody>
</table>

Remarks

P - POLLUTION

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td>Suspended solids</td>
<td>P07</td>
</tr>
<tr>
<td>P02</td>
<td>Heavy metals</td>
<td>P08</td>
</tr>
</tbody>
</table>

Remarks

D - DYNAMICS

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>Current meters (no. of stat.)</td>
<td>D07</td>
</tr>
<tr>
<td>D02</td>
<td>Current meters (average duration of measurements)</td>
<td>D08</td>
</tr>
<tr>
<td>D03</td>
<td>Currents measured from ship drift</td>
<td>D09</td>
</tr>
<tr>
<td>D04</td>
<td>GEK</td>
<td>92</td>
</tr>
<tr>
<td>D05</td>
<td>Georeferenced vessels</td>
<td>D10</td>
</tr>
<tr>
<td>D06</td>
<td>Drifters (number)</td>
<td>D08</td>
</tr>
<tr>
<td>D08</td>
<td>Swell height (number)</td>
<td></td>
</tr>
</tbody>
</table>

B - BIOLOGY

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B02</td>
<td>Phytoplankton pigments</td>
<td>B21</td>
</tr>
<tr>
<td>B08</td>
<td>Phytoplankton</td>
<td>B27</td>
</tr>
<tr>
<td>B09</td>
<td>Zooplankton</td>
<td>B28</td>
</tr>
<tr>
<td>B10</td>
<td>Neuston</td>
<td>B29</td>
</tr>
<tr>
<td>B11</td>
<td>Nection</td>
<td>B30</td>
</tr>
<tr>
<td>B12</td>
<td>Invertebrate nection</td>
<td>B31</td>
</tr>
<tr>
<td>B13</td>
<td>Pelagic eggs and larvae</td>
<td>B32</td>
</tr>
<tr>
<td>B14</td>
<td>Pelagic fish</td>
<td>B33</td>
</tr>
<tr>
<td>B18</td>
<td>Zoobenthos</td>
<td>B37</td>
</tr>
</tbody>
</table>

Remarks

B5 TYPES OF STUDIES

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B50</td>
<td>Physiology</td>
<td></td>
</tr>
<tr>
<td>B51</td>
<td>Identification</td>
<td>B51</td>
</tr>
</tbody>
</table>
OCEANOGRAPHY

GENERAL CRUISE INVENTORY

A - GENERAL INFORMATION ON WORK PERFORMED

A01 Expedition/Project: C.S.K
Number or name: 75-05

A02 Ship or platform: Kelyos (B.I.L.Y.K)
Platform type: 01

A03 Country: Japan

A04 Organisation: Department of Maritime Safety
Hydrographic Office

A05 Chief executive: A. Kosugi

A06 Names and addresses of organisations and persons

HD, NSA
Whom to query:

A07 Data from: L1.3, 0, 8, 1.5, 5

A08 General ocean area: Philippine Sea

A09 Typical mid-ocean station: OO6

A10 Geographic area:

Latitude:

Longitude:

A01 Discipline and type of measurements:

Number	Format
H55, H56, H25, H35, B | A A 1

M - METEOROLOGY

M01 Upper air observations

M02 Incident radiation

M03 Air sea interface studies

M04 Ice observations

M05 Occasionally standard measurements

M06 Systematic standard measurements

M07 Other measurements

Remarks

H - HYDROGRAPHY (Continued)

H55 Surface

H01 Continuous temperature recording

H02 Continuous salinity recording

H03 Discrete temperature measurements

H04 Discrete salinity measurements

H05 Continuous temperature recording

H06 Continuous salinity recording

H07 Discrete temperature measurements

H08 Discrete salinity measurements

H09 Classical oceanographic stations

Remarks

P - POLLUTION

P01 Suspended solids

P02 Heavy metals

P03 Waste water: GoO

P04 Waste water: Nitrate

D - DYNAMICS

D01 Current meters (no. of stations)

D02 Current meters (average duration of measurements)

D03 Currents measured from ship-drift

D04 GEK

D05 Drifters (number)

D06 Surface floats (number)

B - BIOLOGY

B01 Phycoplankton pigments

B02 Phytoplankton

B03 Zooplankton

B04 Neuston

B05 Nekton

B06 Intensive nekton

B07 Paracoplankton

B08 Zoobenthos

Remarks

B09 Types of studies

Remarks

B10 Identification

B11 Behaviour

Remarks
H - HYDROGRAPHY (continued)

<table>
<thead>
<tr>
<th>Number</th>
<th></th>
<th>Format</th>
<th>Number</th>
<th></th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10</td>
<td>Vertical profiles (STD/CTD)</td>
<td>H22</td>
<td>Phosphates</td>
<td>26</td>
<td>a A 1</td>
</tr>
<tr>
<td>H11</td>
<td>Sub-surface measurements underway</td>
<td>H23</td>
<td>Total P</td>
<td>3</td>
<td>a A 1</td>
</tr>
<tr>
<td>H12</td>
<td>Mechanical bathythermograph (no. of drops)</td>
<td>H24</td>
<td>Nitrates</td>
<td>3</td>
<td>a A 1</td>
</tr>
<tr>
<td>H13</td>
<td>Bathythermograph expendable (no. of drops)</td>
<td>H25</td>
<td>Nitrates</td>
<td>3</td>
<td>a A 1</td>
</tr>
<tr>
<td>H14</td>
<td>Sound velocity stations</td>
<td>H26</td>
<td>Silicates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H15</td>
<td>Acoustic stations</td>
<td>H27</td>
<td>Alkalinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H16</td>
<td>Transparency</td>
<td>H28</td>
<td>pH</td>
<td>3</td>
<td>a A 1</td>
</tr>
<tr>
<td>H80</td>
<td>Other measurements</td>
<td>H31</td>
<td>Radioactivity</td>
<td>4</td>
<td>a A 1</td>
</tr>
</tbody>
</table>

Remarks

<table>
<thead>
<tr>
<th>Number</th>
<th></th>
<th>Format</th>
<th>Number</th>
<th></th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td>Suspended solids</td>
<td>P07</td>
<td>Waste water : BOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P02</td>
<td>Heavy metals</td>
<td>P08</td>
<td>Waste water : Nitrates</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

D - DYNAMICS

<table>
<thead>
<tr>
<th>Number</th>
<th></th>
<th>Format</th>
<th>Number</th>
<th></th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>Current meters (no. of sets)</td>
<td>D07</td>
<td>Drift cards (no. released)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D03</td>
<td>Current meters (average duration of measurement)</td>
<td>D09</td>
<td>Total observations (duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D04</td>
<td>Currents measured from ship drift</td>
<td>D10</td>
<td>Temperature / salinity / no. of observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D05</td>
<td>Drifters (number)</td>
<td>D06</td>
<td>Swell float (number)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B - BIOLOGY

<table>
<thead>
<tr>
<th>Number</th>
<th></th>
<th>Format</th>
<th>Number</th>
<th></th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B02</td>
<td>Phytoplankton pigments</td>
<td>B21</td>
<td>Commercial bactericidal substances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B03</td>
<td>Phytoplankton</td>
<td>B27</td>
<td>Deep scattering layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B04</td>
<td>Zooplankton</td>
<td>B26</td>
<td>Acoustic reflections on marine organisms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>Neutrons</td>
<td>B29</td>
<td>Biological sounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>Nekton</td>
<td>B30</td>
<td>Bioluminescence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>Invertebrate sections</td>
<td>B31</td>
<td>Vitamin concentrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td>Pelagic eggs and larvae</td>
<td>B32</td>
<td>Antioxidant concentrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B14</td>
<td>Pelagic fish</td>
<td>B33</td>
<td>Hydrocarbon concentrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>Zooplankton</td>
<td>B37</td>
<td>Tapping</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- **B5 TYPES OF STUDIES**
 - B50 | Physiology |
 - B51 | Identification |
H - HYDROGRAPHY (continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>I</th>
<th>Format</th>
<th>Number</th>
<th>I</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10</td>
<td></td>
<td></td>
<td>H22</td>
<td>34</td>
<td>a</td>
</tr>
<tr>
<td>H11</td>
<td></td>
<td></td>
<td>H23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12</td>
<td>90</td>
<td>A 8</td>
<td>H24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H13</td>
<td>3</td>
<td>A 3</td>
<td>H25</td>
<td>2</td>
<td>A 1</td>
</tr>
<tr>
<td>H14</td>
<td></td>
<td></td>
<td>H26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H15</td>
<td></td>
<td></td>
<td>H27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H16</td>
<td></td>
<td></td>
<td>H28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H80</td>
<td></td>
<td></td>
<td>H31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

D - DYNAMICS

<table>
<thead>
<tr>
<th>Number</th>
<th>I</th>
<th>Format</th>
<th>Number</th>
<th>I</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td></td>
<td></td>
<td>D07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D02</td>
<td></td>
<td></td>
<td>D08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D03</td>
<td></td>
<td></td>
<td>D09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D04</td>
<td>86</td>
<td>a 1</td>
<td>D10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D05</td>
<td></td>
<td></td>
<td>D56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D10 Current meters (no. of std.)
D07 Drift cards (no. released)
D02 Current meter (average duration of measurement)
D08 Benjoin drifters (no. released)
D03 Currents measured from ship drift
D09 Total observations (duration)
D04 GEK
D10 Sea and swell (no. of observations)
D55 Drifters (number)
D56 Other
D58 Swell floats (number)

B - BIOLOGY

<table>
<thead>
<tr>
<th>Number</th>
<th>I</th>
<th>Format</th>
<th>Number</th>
<th>I</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B02</td>
<td>13</td>
<td>a A 1</td>
<td>B21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B06</td>
<td>13</td>
<td>a A 1</td>
<td>B27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B09</td>
<td>9</td>
<td>a A 1</td>
<td>B28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td></td>
<td></td>
<td>B29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td></td>
<td></td>
<td>B30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td></td>
<td></td>
<td>B31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td></td>
<td></td>
<td>B32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B14</td>
<td></td>
<td></td>
<td>B33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B18</td>
<td></td>
<td></td>
<td>B37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

B5 Types of studies
B05 Physiology
B61 Identification
B01 Behavior
A - GENERAL INFORMATION ON WORK PERFORMED

<table>
<thead>
<tr>
<th>Code</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>Equitation/Project: C.S.K</td>
</tr>
<tr>
<td>A02</td>
<td>Ship or platform: Shyama Maru</td>
</tr>
<tr>
<td>A03</td>
<td>Country: Japan</td>
</tr>
<tr>
<td>A04</td>
<td>Organization: Kobe Marine Observatory</td>
</tr>
<tr>
<td>A05</td>
<td>Name/Address of Organizing and Persons</td>
</tr>
</tbody>
</table>

J.M.A. Otsuka, Chiyoda Ken, Tokyo 102, K.M.O.
Kote Japan

<table>
<thead>
<tr>
<th>Code</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>A07</td>
<td>Date from: 02/10/75 to 08/12/75</td>
</tr>
<tr>
<td>A10</td>
<td>Geographic area: Philippine Sea & Inland Sea</td>
</tr>
</tbody>
</table>

M - METEOROLOGY

<table>
<thead>
<tr>
<th>Code</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>Upper air observations</td>
</tr>
<tr>
<td>M02</td>
<td>Incident radiation</td>
</tr>
<tr>
<td>M03</td>
<td>Air-sea interface studies</td>
</tr>
</tbody>
</table>

H - HYDROGRAPHY

<table>
<thead>
<tr>
<th>Code</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>H05</td>
<td>Continuous temperature recording</td>
</tr>
<tr>
<td>H06</td>
<td>Continuous salinity recording</td>
</tr>
<tr>
<td>H07</td>
<td>Discrete temperature measurements</td>
</tr>
<tr>
<td>H08</td>
<td>Discrete salinity measurements</td>
</tr>
<tr>
<td>H21</td>
<td>Oxygen</td>
</tr>
</tbody>
</table>

Remarks

<table>
<thead>
<tr>
<th>Code</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
H - HYDROGRAPHY (Continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Code</th>
<th>Name</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10</td>
<td>A1</td>
<td>Vertical profiles (STD/CTD)</td>
<td>A1</td>
</tr>
<tr>
<td>H11</td>
<td>A1</td>
<td>Sub-surface measurements underway</td>
<td>A1</td>
</tr>
<tr>
<td>H12</td>
<td>A1</td>
<td>Mechanical bathythermograph (no. of drops)</td>
<td>A1</td>
</tr>
<tr>
<td>H13</td>
<td>A1</td>
<td>Bathythermograph (no. of drops)</td>
<td>A1</td>
</tr>
<tr>
<td>H14</td>
<td>A1</td>
<td>Sound velocity stations</td>
<td>A1</td>
</tr>
<tr>
<td>H15</td>
<td>A1</td>
<td>Acoustic stations</td>
<td>A1</td>
</tr>
<tr>
<td>H16</td>
<td>A1</td>
<td>Transparency</td>
<td>A1</td>
</tr>
<tr>
<td>H80</td>
<td>A1</td>
<td>Other measurements</td>
<td>A1</td>
</tr>
</tbody>
</table>

Remarks

P - POLLUTION

<table>
<thead>
<tr>
<th>Number</th>
<th>Code</th>
<th>Name</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td>A1</td>
<td>Suspended solids</td>
<td>A1</td>
</tr>
<tr>
<td>P02</td>
<td>A1</td>
<td>Heavy metals</td>
<td>A1</td>
</tr>
</tbody>
</table>

Remarks

D - DYNAMICS

<table>
<thead>
<tr>
<th>Number</th>
<th>Code</th>
<th>Name</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>A1</td>
<td>Current meters (no. of sat.)</td>
<td>A1</td>
</tr>
<tr>
<td>D02</td>
<td>A1</td>
<td>Current meters (average duration of measurement)</td>
<td>A1</td>
</tr>
<tr>
<td>D03</td>
<td>A1</td>
<td>Currents measured from ship (no. of drops)</td>
<td>A1</td>
</tr>
<tr>
<td>D04</td>
<td>A1</td>
<td>G Ek (no. of drops)</td>
<td>A1</td>
</tr>
<tr>
<td>D05</td>
<td>A1</td>
<td>Drifters (number)</td>
<td>A1</td>
</tr>
<tr>
<td>D06</td>
<td>A1</td>
<td>Swallow floats (number)</td>
<td>A1</td>
</tr>
</tbody>
</table>

Remarks

B - BIOLOGY

<table>
<thead>
<tr>
<th>Number</th>
<th>Code</th>
<th>Name</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B52</td>
<td>A1</td>
<td>Physioprofile (no. of sat.)</td>
<td>A1</td>
</tr>
<tr>
<td>B98</td>
<td>A1</td>
<td>Zooplankton (no. of drops)</td>
<td>A1</td>
</tr>
<tr>
<td>B10</td>
<td>A1</td>
<td>Neuston</td>
<td>A1</td>
</tr>
<tr>
<td>B11</td>
<td>A1</td>
<td>Nebon</td>
<td>A1</td>
</tr>
<tr>
<td>B12</td>
<td>A1</td>
<td>Invertebrate nebon</td>
<td>A1</td>
</tr>
<tr>
<td>B13</td>
<td>A1</td>
<td>Fauna eggs and larvae</td>
<td>A1</td>
</tr>
<tr>
<td>B14</td>
<td>A1</td>
<td>Pelagic fish</td>
<td>A1</td>
</tr>
<tr>
<td>B15</td>
<td>A1</td>
<td>Zooplankton</td>
<td>A1</td>
</tr>
</tbody>
</table>

Remarks

B5 TYPES OF STUDIES

<table>
<thead>
<tr>
<th>Number</th>
<th>Code</th>
<th>Name</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B51</td>
<td>A1</td>
<td>Identification</td>
<td>A1</td>
</tr>
</tbody>
</table>
ROSCOP (2nd edition)

OCEANOGRAPHY

GENERAL CRUISE INVENTORY

A - GENERAL INFORMATION ON WORK PERFORMED

A00 Expedition/Project..... CSK

A01 Declared national press? YES

A02 Is Exchange restricted? YES

A03 Country..... Japan

A04 Organization...... Nagasaki Marine Observatory

A05 Names and addresses of organizations and persons

A06 Whom to query.....

A07 Date from...... 1.3.0.7.7.5.7

A08 Type(s) of cruise (symbol)..... D07

A09 Geographic area..... East China Sea (Tung Hai)

A10 If all data were collected at a fixed station, fill in the coordinates

Discipline and type of measurements

Index 10 x 10 Index 10 x 10 Index 10 x 10
01 00 00

M - METEOROLOGY

M01 Upper air observations

M02 Incident radiation

M03 Air-sea interface studies

Remarks

H - HYDROGRAPHY

H01 Continuous temperature recording

H02 Continuous salinity recording

H03 Discrete temperature measurements

H04 Discrete salinity measurements

HP PHYSICAL

H05 Continuous temperature recording

H06 Continuous salinity recording

H07 Discrete temperature measurements

H08 Discrete salinity measurements

HC CHEMICAL

H09 Classific to whom query

H10 Vertical profiles (ST/STD/TI)

H11 MB surface measurements underway

H12 Mechanical bottom thermograph (me of depth)

H13 Bottom thermograph expendable (me of depth)

H14 Sound velocity stations

H15 Acoustic stations

H16 Transparency

H17 Other measurements

Remarks

P - POLLUTION

P01 Suspended solids

P02 Heavy metals

P03 Wastes water / BOD

P04 Wastes water / Nitrate

Remarks

D - DYNAMICS

D01 Current meters (no. of stat.)

D02 Current meters (average duration of measurements)

D03 Currents measured from ship drift

D04 GEK

D05 Drifters (number)

D06 Other

D07 Seawater floats (number)

B - BIOLOGY

B01 Phytoplankton pigments

B02 Phytoplankton

B03 Zooplankton

B04 Neuston

B05 Nekton

B06 Invertebrate rearm

B07 Pelagic eggs and larvae

B08 Pelagic fish

B09 Zooplankton

B10 Phytoplankton pigments

B11 Phytoplankton

B12 Zooplankton

B13 Neuston

B14 Nekton

B15 Invertebrate rearm

B16 Pelagic eggs and larvae

B17 Pelagic fish

B18 Zooplankton

Remarks

BS TYPES OF STUDIES

B00 Physiology

B01 Identification

B02 Behaviour

B03 Identification
H - HYDROGRAPHY (Continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Format</th>
<th>Number</th>
<th>Format</th>
<th>Number</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10</td>
<td></td>
<td>H2</td>
<td></td>
<td>H02</td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td></td>
<td>H23</td>
<td></td>
<td>H03</td>
<td></td>
</tr>
<tr>
<td>H12</td>
<td></td>
<td>H24</td>
<td></td>
<td>H04</td>
<td></td>
</tr>
<tr>
<td>H13</td>
<td></td>
<td>H25</td>
<td></td>
<td>H05</td>
<td></td>
</tr>
<tr>
<td>H14</td>
<td></td>
<td>H26</td>
<td></td>
<td>H06</td>
<td></td>
</tr>
<tr>
<td>H15</td>
<td></td>
<td>H27</td>
<td></td>
<td>H07</td>
<td></td>
</tr>
<tr>
<td>H16</td>
<td></td>
<td>H28</td>
<td></td>
<td>H08</td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td></td>
<td></td>
<td></td>
<td>H09</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

P - POLLUTION

<table>
<thead>
<tr>
<th>Number</th>
<th>Format</th>
<th>Number</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td></td>
<td>P07</td>
<td></td>
</tr>
<tr>
<td>P02</td>
<td></td>
<td>P08</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

D - DYNAMICS

<table>
<thead>
<tr>
<th>Number</th>
<th>Format</th>
<th>Number</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td></td>
<td>D07</td>
<td></td>
</tr>
<tr>
<td>D02</td>
<td></td>
<td>D08</td>
<td></td>
</tr>
<tr>
<td>D03</td>
<td></td>
<td>D09</td>
<td></td>
</tr>
<tr>
<td>D04</td>
<td></td>
<td>D10</td>
<td></td>
</tr>
<tr>
<td>D05</td>
<td></td>
<td>D00</td>
<td></td>
</tr>
<tr>
<td>D06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

B - BIOLOGY

<table>
<thead>
<tr>
<th>Number</th>
<th>Format</th>
<th>Number</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B02</td>
<td></td>
<td>B21</td>
<td></td>
</tr>
<tr>
<td>B03</td>
<td></td>
<td>B27</td>
<td></td>
</tr>
<tr>
<td>B09</td>
<td></td>
<td>B38</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td></td>
<td>B29</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td></td>
<td>B30</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td></td>
<td>B31</td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td></td>
<td>B32</td>
<td></td>
</tr>
<tr>
<td>B14</td>
<td></td>
<td>B33</td>
<td></td>
</tr>
<tr>
<td>B18</td>
<td></td>
<td>B37</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

TYPICAL TYPES OF STUDIES

<table>
<thead>
<tr>
<th>Number</th>
<th>Format</th>
<th>Number</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B100</td>
<td></td>
<td>B810</td>
<td></td>
</tr>
<tr>
<td>B811</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. ABSTRACT OF THE PAPER ON CSK
(Continued from the previous issue, No. 49 of the CSK Newsletter)

(94) Yukio Sugimura*, Yoshimi Suzuki*, and Yasuo Miyake**

The Content of Selenium and its Chemical Form in Sea Water. Journal of the Oceanographical Society of Japan Vol. 32, pp.235 to 241, 1976. (in English)

Abstract: By using the new fluorometric method of determination of the total selenium (ΣSe), Se(IV) and Se(VI), the content of selenium in sea water was determined in the western North Pacific. Results showed that the content of ΣSe in surface water ranged from 0.06 to 0.12μg/l, while in deeper layers, the content increased to 0.20μg/l. It was found that Se(IV) showed rather uniform distribution with depth, while Se(VI) increased with depth to about three times that in the surface. The ratio of Se(IV) to the ΣSe ranged from 0.5 to 0.8 in the surface and 0.4 to 0.6 in the deep. The coexistence of the hexa- and tetravalent ions of selenium was confirmed both in surface and deep layers. Some results of observations on the content of selenium in the coastal areas of Japan were also reported.

* Meteorological Research Institute, Koenji-kita,4-35-8, Suginami, Tokyo,166 Japan
** Geochemistry Research Association, Koenji-kita,4-29-2-217, Suginami, Tokyo,166 Japan

IV. PUBLICATIONS
The following 44 volumes of the "Data Report of CSK" series, and List of Data Report of CSK were published by KDC (JODC) from February 1975 to October 1976.

<table>
<thead>
<tr>
<th>No.</th>
<th>Ship & Area</th>
<th>Period</th>
<th>KDC Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>259</td>
<td>Oshoro Maru, South China Sea</td>
<td>Nov.-Dec. 1970</td>
<td>49K160</td>
</tr>
<tr>
<td>309</td>
<td>Orlick, N. W. of the North Pacific</td>
<td>Jul.-Sep. 1971</td>
<td>90K035</td>
</tr>
<tr>
<td>316</td>
<td>Prilivy, W. of North Pacific</td>
<td>Sep.-Oct. 1971</td>
<td>90K044</td>
</tr>
<tr>
<td>317</td>
<td>Jalaniadi, South China Sea & Seribiu Islands</td>
<td>December 1971</td>
<td>42K005</td>
</tr>
<tr>
<td>320</td>
<td>Prilivy, East of Japan</td>
<td>February 1972</td>
<td>90K036</td>
</tr>
<tr>
<td>323</td>
<td>Chofu Maru, East China Sea</td>
<td>Jan.-Feb. 1972</td>
<td>49K149</td>
</tr>
<tr>
<td>324</td>
<td>Kofu Maru, East of Japan</td>
<td>Feb.-Mar. 1972</td>
<td>49K155</td>
</tr>
<tr>
<td>325</td>
<td>Shumpu Maru, Osaka Wan, Kii Channel & South of Japan</td>
<td>Feb.-Mar. 1972</td>
<td>49K156</td>
</tr>
<tr>
<td>327</td>
<td>Seifu Maru, Japan Sea</td>
<td>Feb.-Mar. 1972</td>
<td>49K157</td>
</tr>
<tr>
<td>329</td>
<td>Keledkeo, Andaman Sea</td>
<td>Jan.-May. 1972</td>
<td>86K016</td>
</tr>
<tr>
<td>330</td>
<td>U.M. Schokalsky, Pacific Ocean</td>
<td>Jan.-Apr. 1972</td>
<td>90K045</td>
</tr>
<tr>
<td>338</td>
<td>Kofu Maru, Okhotsk Sea & E. of Japan</td>
<td>Jul.-Sep. 1972</td>
<td>49K164</td>
</tr>
<tr>
<td>339</td>
<td>Shumpu Maru, Bungo Channel, Kii Channel & South of Japan</td>
<td>Jul.-Aug. 1972</td>
<td>49K162</td>
</tr>
<tr>
<td>343</td>
<td>Chofu Maru, East China Sea</td>
<td>Jul.-Aug. 1972</td>
<td>49K166</td>
</tr>
<tr>
<td>No.</td>
<td>Ship & Area</td>
<td>Period</td>
<td>KDC Ref. No.</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>347</td>
<td>Samudera</td>
<td>Jul. - Aug. 1972</td>
<td>42K006</td>
</tr>
<tr>
<td></td>
<td>South China Sea & around Seribu Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>348</td>
<td>Orlick</td>
<td>Jul. - Sep. 1972</td>
<td>90K042</td>
</tr>
<tr>
<td></td>
<td>N. W. of North Pacific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>Osahoro Maru</td>
<td>Nov. - Dec. 1972</td>
<td>49K175</td>
</tr>
<tr>
<td></td>
<td>South China Sea & Indian Ocean</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. of North Pacific & South of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>Kofu Maru</td>
<td>February 1973</td>
<td>49K174</td>
</tr>
<tr>
<td></td>
<td>East of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>353</td>
<td>Shumpu Maru</td>
<td>February 1973</td>
<td>49K170</td>
</tr>
<tr>
<td></td>
<td>Bungo Channel, Kii Channel & South of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>354</td>
<td>Chofu Maru</td>
<td>Jan. - Feb. 1973</td>
<td>49K161</td>
</tr>
<tr>
<td></td>
<td>East China Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japan Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356</td>
<td>Shoyo</td>
<td>March 1973</td>
<td>49K168</td>
</tr>
<tr>
<td></td>
<td>S. E. of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>358</td>
<td>Suro No. 3</td>
<td>Apr. - May 1973</td>
<td>24K048</td>
</tr>
<tr>
<td></td>
<td>South of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>359</td>
<td>Takuyo</td>
<td>May 1973</td>
<td>49K171</td>
</tr>
<tr>
<td></td>
<td>South of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>Samudera</td>
<td>Jun. - Jul. 1973</td>
<td>42K007</td>
</tr>
<tr>
<td></td>
<td>Djakarta Bay & South China Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West of Pacific</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>East of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Osaka Wan, Kii Channel & South of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>East of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>Seifu Maru</td>
<td>Jul. - Aug. 1973</td>
<td>49K176</td>
</tr>
<tr>
<td></td>
<td>Japan Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>Kaiyo</td>
<td>August 1973</td>
<td>49K193</td>
</tr>
<tr>
<td></td>
<td>South of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>367</td>
<td>Suro No. 3</td>
<td>Aug. - Sep. 1973</td>
<td>24K049</td>
</tr>
<tr>
<td></td>
<td>South of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>Takuyo</td>
<td>Oct. - Nov. 1973</td>
<td>49K185</td>
</tr>
<tr>
<td></td>
<td>East China Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>373</td>
<td>Chofu Maru</td>
<td>Jan. - Feb. 1974</td>
<td>49K179</td>
</tr>
<tr>
<td></td>
<td>East China Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West of Pacific</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japan Sea</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kii Channel & S. of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>East of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>378</td>
<td>Takuyo</td>
<td>May 1974</td>
<td>49K188</td>
</tr>
<tr>
<td></td>
<td>South of Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>379</td>
<td>Suro No. 3</td>
<td>May Jun. 1974</td>
<td>24K050</td>
</tr>
<tr>
<td></td>
<td>South of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>March 1976</td>
<td></td>
</tr>
<tr>
<td></td>
<td>List of Data Report of CSK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V. DATA RECEIVED

Catalogue of Data Received by KDC(JUDC), 1 October 1976 - 31 January 1977

<table>
<thead>
<tr>
<th>No. Day/Yr.</th>
<th>KDC Ref. No.</th>
<th>Ship Code</th>
<th>Agency</th>
<th>Period</th>
<th>Area</th>
<th>No. of Stas.</th>
<th>Serial</th>
<th>Nts</th>
<th>Current Status/Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.29/76</td>
<td>49K217</td>
<td>TA</td>
<td>HDREA</td>
<td>10.18-11.16,1975</td>
<td>E. China Sea & S. Japan</td>
<td>56</td>
<td>T S O P</td>
<td>S1</td>
<td>PH</td>
</tr>
<tr>
<td>11.29/76</td>
<td>49K218</td>
<td>SY</td>
<td>HDREA</td>
<td>03.24-03.24,1976</td>
<td>S. of Japan</td>
<td>18</td>
<td>T S O P</td>
<td>S1</td>
<td>PH</td>
</tr>
<tr>
<td>11.29/76</td>
<td>49K219</td>
<td>TA</td>
<td>HDREA</td>
<td>05.12-06.16,1976</td>
<td>S. of Japan</td>
<td>41</td>
<td>T S O P</td>
<td>S1</td>
<td>PH</td>
</tr>
<tr>
<td>11.29/76</td>
<td>49K220</td>
<td>KA</td>
<td>HDREA</td>
<td>08.09-08.25,1976</td>
<td>S. of Japan</td>
<td>23</td>
<td>T S O P</td>
<td>S1</td>
<td>PH</td>
</tr>
<tr>
<td>01.10/76</td>
<td>49K221</td>
<td>SI</td>
<td>NMROMA</td>
<td>07.08-08.16,1976</td>
<td>Japan Sea & Wakisawa Wan</td>
<td>50</td>
<td>T S O P TP N2 N3 PH</td>
<td>33</td>
<td>119</td>
</tr>
</tbody>
</table>

Ship Code

<table>
<thead>
<tr>
<th>TA</th>
<th>Takuyo</th>
<th>KA</th>
<th>Kaiyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY</td>
<td>Shoyo</td>
<td>SI</td>
<td>Seifu Maru</td>
</tr>
</tbody>
</table>