NEAR–GOOS Climate Monitoring Section

A pilot project of JMA and POI, 2011-2015

Toshiya Nakano, Satoshi Ogawa, Sho Hibino, Hiroyuki Inoue and Moeko Kitamoto (JMA)

Dmitry Kaplunenko, Aleksandr Lazaryuk and Vyacheslav Lobanov (POI)

Marine Division, Japan Meteorological Agency
V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences
Global warming may slow down deep–ocean water production & circulations that are driven by sea surface cooling. This may affect climate pattern.

Changes in deep–sea water & circulations are expected to appear earlier in isolated seas.

WG–I Report of IPCC’s 4th Assessment Report:
- “Because of this sea’s limited size, it responds quickly through its entire depth to surface forcing changes.”
- “The warming … is clearly apparent in this isolated basin, which warmed by 0.1 °C at 1,000m and 0.05 °C below 2,500m since 1960s.”
- “Deep water production in the Japan Sea slowed for many decades, with a marked decrease in dissolved oxygen from the 1930s to 2000 at a rate of about 0.8µmol/kg/yr.”
Increasing of deep water temperature and decreasing of dissolved oxygen in the eastern part of the sea.
Trends of bottom water T and DO (1950–2011)

Тенденция роста температуры воды и понижения содержания растворенного кислорода донных вод, отражающая глобальное потепление климата, была прервана аномально холодной зимой 2001 гг, однако в дальнейшем режим ослабления вентиляции был восстановлен.
1. Complete cross-basin sections were hardly carried out, partly due to national EEZ borders.
2. Thus JMA & POI suggested to make observations along a line connecting Japan & Russia in a synchronized manner.
3. Observation data will be exchanged between JMA & POI. Results will be available through Regional Data Bases for all NEAR–GOOS participants.
4. Observations along the same line will be continued in the following years, producing long-term dataset.
5. The project was approved by NEAR–GOOS CC meeting in 2011 and started the same year.
Observation Details

- Observation period 2011–2015:
 - Late October–early November

- Observed elements:
 - CTD & water sampling down to the bottom
 - Parameters observed:
 - Temperature, Salinity,
 - Oxygen, Nitrate, Nitrite, Silicate, pH
 - Total inorganic carbon, Alkalinity
Climate Monitoring Section Implementation

r/v Akademik M.A. Lavrentyev
Akademik Oparin, Prof. Gagarinskiy

r/v Keifu-maru

Synchronised CTD observations:
2011 Oct–Nov
2012 Oct–Nov
2013 Oct
2014 Oct
2015 Oct
Presentation of Data

http://goos.kishou.go.jp/rrtdb/cross-section/cross-section.html

Both plots and data are available
Cross-section implementation

- **Used equipment:** JMA POI

- Temperature CTD: SBE3plus SBE3plus
 - Reference: SBE35 SBE35

- Salinity/Conductivity CTD SBE 4C SBE4C
 - Reference: Autosal Portosal

- Dissolved Oxygen CTD: Rinko III Rinko III
 - Reference: DOT-01X Dosimate

- Because of different accuracy of instruments an intercalibration is important issue!
JMA-POI Joint Workshops

6-7 Dec, 2012 Tokyo, Japan
7 Dec, 2015, Tokyo, Japan
JMA-POI Data Intercomparison

Japan Basin (2012)

Potential Temperature (°C)

Dissolved Oxygen (µmol/kg)

2012

Cross-Basin obs. in Japan Sea (2014)

Pressure (dbar)

Salinity

2014
Results of CTDO data correction by JMA

Target of JMA uncertainty:

- Temperature (SBE3plus and SBE35): ±0.001
- Salinity (SBE4C and AUTOSAL8400B): <±0.002
- Dissolved oxygen (RINKO and DOT-01X): ±1µmol/kg
Preliminary Results

A tendency of bottom water T increase and DO decrease in relation to global warming.
Presentation of Results

Oral and poster presentations at:
1. WESTPAC Scientific Symposium, 2014
2. PICES-XXIII Annual Meeting, 2014
3. PICES-XXIV Annual Meeting, 2015
Future work on Climate Monitoring

- Continue observations, every year, Sept-Nov period
- Include JMA and POI observations in the east
- Analysis of historical data: $< \pm 0.002$